首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1981篇
  免费   123篇
  国内免费   1篇
  2023年   16篇
  2022年   11篇
  2021年   55篇
  2020年   42篇
  2019年   44篇
  2018年   91篇
  2017年   74篇
  2016年   95篇
  2015年   100篇
  2014年   136篇
  2013年   171篇
  2012年   130篇
  2011年   136篇
  2010年   98篇
  2009年   51篇
  2008年   57篇
  2007年   43篇
  2006年   62篇
  2005年   33篇
  2004年   25篇
  2003年   20篇
  2002年   31篇
  2001年   16篇
  2000年   27篇
  1999年   20篇
  1998年   24篇
  1997年   11篇
  1996年   18篇
  1995年   11篇
  1994年   19篇
  1993年   15篇
  1992年   14篇
  1991年   21篇
  1988年   9篇
  1987年   16篇
  1985年   12篇
  1984年   10篇
  1982年   14篇
  1981年   19篇
  1980年   14篇
  1979年   9篇
  1978年   11篇
  1977年   14篇
  1976年   20篇
  1975年   15篇
  1974年   14篇
  1973年   8篇
  1972年   12篇
  1969年   10篇
  1960年   8篇
排序方式: 共有2105条查询结果,搜索用时 171 毫秒
81.
Ancient Evolutionary Trade-Offs between Yeast Ploidy States   总被引:1,自引:0,他引:1  
The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker''s yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy–environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%–17% of ploidy–environment interactions. The mechanism of the cell size–based superior reproductive efficiency of haploids during Li+ exposure was traced to the Li+ exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li+ tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots.  相似文献   
82.
The main function of carbonic anhydrases (CAs) in cancer cells is the pH regulation through a conversion of H2O and CO2 to H+ and HCO3. However, the data of in vitro and in vivo studies have demonstrated that transmembrane isoforms of CA IX and CA XII are involved in various steps of cancer cell migration, invasion and metastasis. According to literature, inhibition of these CAs can affect the expression of multiple proteins. Some scientific groups have reported the possible interactions between CA IX and E-cadherin–catenin system, CA IX and integrins, CA IX, CA XII and ion transporters, which all are highly involved in cell-to-cell adhesion, the formation of membrane protrusions and focal adhesions. Nevertheless, CA IX and CA XII have a high impact on tumour growth and metastases formation. The data discussed in this review are quite recent. It highly support the role of CA IX and CA XII in various cancer metastasis processes through their interactions to other invasion proteins. Nevertheless, all findings show the great potential of these CAs in the context of research and application in clinical use.  相似文献   
83.
84.
Plant Cell, Tissue and Organ Culture (PCTOC) - We initiated and optimized in vitro culture conditions of the endemic Chinese plant species—Schisandra henryi C. B. Clarke. Different types of...  相似文献   
85.
Common centaury (Centaurium erythraea Rafn.) is a plant species that can inhabit saline soils. It is known as a plant with high spontaneous regeneration potential in vitro. In the present work we evaluated shoots and roots salinity tolerance of non-transformed and three AtCKX transgenic centaury lines to graded NaCl concentrations (0, 50, 100, 150, 200 mM) in vitro. Overexpression of AtCKX genes in transgenic centaury plants resulted in an altered cytokinins (CKs) profile leading to a decline of bioactive CK levels and, at the same time, increased contents of storage CK forms, inactive CK forms and/or CK nucleotides. Significant increment of fresh shoot weight was obtained in shoots of non-transformed and AtCKX1 transgenic line only on medium supplemented with 50 mM NaCl. However two analysed AtCKX2 transgenic lines reduced shoot growth at all NaCl concentrations. In general, centaury roots showed higher tolerance to salinity than shoots. Non-transformed and AtCKX1 transgenic lines tolerated up to 100 mM NaCl without change in frequency of regeneration and number of regenerated plants. Roots of two analysed AtCKX2 transgenic lines showed different regeneration potential under salt stress. Regeneration of transgenic AtCKX2-26 shoots even at 200 mM NaCl was recorded. Salinity stress response of centaury shoots and roots was also evaluated at biochemical level. Free proline, malondialdehyde and hydrogen peroxide content as well as antioxidative enzymes activities were investigated in shoots and roots after 1, 2, 4 and 8 weeks. In general, adition of NaCl in culture medium elevated all biochemical parameters in centaury shoots and in roots. Considering that all analysed AtCKX transgenic centaury lines showed altered salt tolerance to graded NaCl concentrations in vitro it can be assumed that CKs might be involved in plant defence to salt stress conditions.  相似文献   
86.
Previously we identified Rrp1 and Rrp2 as two proteins required for the Sfr1/Swi5-dependent branch of homologous recombination (HR) in Schizosaccharomyces pombe. Here we use a yeast two-hybrid approach to demonstrate that Rrp1 and Rrp2 can interact with each other and with Swi5, an HR mediator protein. Rrp1 and Rrp2 form co-localizing methyl methanesulphonate–induced foci in nuclei, further suggesting they function as a complex. To place the Rrp1/2 proteins more accurately within HR sub-pathways, we carried out extensive epistasis analysis between mutants defining Rrp1/2, Rad51 (recombinase), Swi5 and Rad57 (HR-mediators) plus the anti-recombinogenic helicases Srs2 and Rqh1. We confirm that Rrp1 and Rrp2 act together with Srs2 and Swi5 and independently of Rad57 and show that Rqh1 also acts independently of Rrp1/2. Mutants devoid of Srs2 are characterized by elevated recombination frequency with a concomitant increase in the percentage of conversion-type recombinants. Strains devoid of Rrp1 or Rrp2 did not show a change in HR frequency, but the number of conversion-type recombinants was increased, suggesting a possible function for Rrp1/2 with Srs2 in counteracting Rad51 activity. Our data allow us to propose a model placing Rrp1 and Rrp2 functioning together with Swi5 and Srs2 in a synthesis-dependent strand annealing HR repair pathway.  相似文献   
87.
88.
89.
The effect of Potato virus Y NTN (PVY) infection upon photosynthesis was analysed in transgenic Pssu-ipt tobacco overproducing endogenous cytokinins in comparison with control, nontransgenic Nicotiana tabacum plants. The course of the infection from the early to the late stage was monitored by measuring of photosynthetic gas exchange and fast chlorophyll (Chl) a fluorescence induction kinetics. Leaf photosynthesis was also analysed using Chl fluorescence imaging (Chl-FI). From the different fluorescence parameters obtained using Chl-FI, the nonphotochemical quenching (NPQ) proved to be the most useful parameter to assess the effect of PVY infection. On the other hand, Chl-FI was found to be inapplicable for any presymptomatic detection of PVY infection in tobacco. The lower accumulation of the virus was found in transgenic plants and corresponded also with the presence of visible symptoms of PVY infection. The net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) significantly decreased with the progress of the infection in both control plant types and transgenic rooted plants, while transgenic grafts were much less affected. The analysis of the Chl fluorescence transient revealed higher number of silent dissipative reaction centres, higher nonphotochemical dissipation, and significantly lower performance index, PI(abs), in the healthy transgenic grafts. Chl-FI also confirmed significantly higher NPQ in transgenic grafts.  相似文献   
90.
The 14-3-3 protein family is a highly conserved and widely distributed group of proteins consisting of multiple isoforms in eukaryotes. Ubiquitously expressed, 14-3-3 proteins play key roles in DNA replication, cell cycle regulation, and apoptosis. The function of 14-3-3 proteins is mediated by interaction with a large number of other proteins and with DNA. It has been demonstrated that 14-3-3γ protein binds strongly to cruciform structures and is crucial for initiating replication. In this study, we analyzed DNA binding properties of the 14-3-3γ isoform to linear and supercoiled DNA. We demonstrate that 14-3-3γ protein binds strongly to long DNA targets, as evidenced by electrophoretic mobility shift assay on agarose gels. Binding of 14-3-3γ to DNA target results in the appearance of blurry, retarded DNA bands. Competition experiments with linear and supercoiled DNA on magnetic beads show very strong preference for supercoiled DNA. We also show by confocal microscopy that 14-3-3 protein in the HCT-116 cell line is co-localized with DNA cruciforms. This implies a role for the 14-3-3γ protein in its binding to local DNA structures which are stabilized by DNA supercoiling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号